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Problem studied:

The standard methods for the detection and identification of pathogens require
that either a sufficient amount of such pathogens are present or that these
pathogens are grown under selective conditions. These procedures are time
consuming and inadequate in many situations. The objective of this project was
to establish a rapid and extremely sensitive method to detect and identify BW
pathogens in our environment and in human body fluids using the revolutionary
approach of Rare Event Imaging.

The Rare Event Imaging System (REIS) is an automated, epifluorescence
microscope—based image analysis platform developed in this laboratory for the
sensitive detection of cancer cells in the peripheral blood. During the grant period
we developed procedures for the fluorescent labeling of microorganisms and
adopted the Rare Event technology to be able to detect them.

One of the major challenges of our approach was to accelerate the analysis
process to a level that is adequate for most purposes. We addressed this issue
from several perspectives. First, we developed various in situ hybridization-based
protocols that yielded high signal/noise ratios. Second, we adapted the system to
work at the lowest possible microscope magnification while still allowing reliable
identification of microorganisms. Third, we developed image analysis algorithms
to better distinguish between true positive and false positive hits.

Specific Aims:

« Development of methods for specific visualization of pathogens

» Optimization of procedures for analysis in the REIS

« Adopt the extremely sensitive and rapid automated detection system, the
Rare Event Imaging System (REIS), for pathogen detection

« Simultaneous enumeration and identification of pathogens in water/air
samples and human body fluids

Project Milestones:

1. Adaptation and optimization of basic procedures and development of
probes

Development of the Multiplex procedure

Detection, enumeration and identification of microorganisms in
environmental samples and in human body fluids

Adaptation of the REIS for the detection of microorganisms

Proof of principle: Rapid and automated detection of CMV infected
leukocytes in the peripheral blood using the REIS approach
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1. Adaptation and optimization of basic procedures and development of probes

First we tested and optimized various slide coating procedures using gram-stain
and acridinorange labels to find those that could best be coupled to REIS
analysis. We determined that the bacteria adhere firmly to gelatin-coated slides
and to specially coated and charged adhesive slides (Marienfeld GmbH,
Germany). Appropriate cell deposition conditions have been worked out to
ensure maximal recovery of bacteria.

Once the plating procedures were developed we tested various commercially
available monoclonal and polyclonal antibodies for the labeling of bacteria. Using
E. coli and S. epidermidis as models we established procedures for the
immuncytochemical labeling of specific bacterial species. The fixation and
labeling conditions were optimized in these experiments to achieve bright
fluorescent signals with minimal background staining.

In parallel to developing immuncytochemical labeling procedures we acquired
fluorescein labeled oligonucleotides and experimented with in-situ hybridization
based detection of bacteria. We determined appropriate in-situ hybridization
conditions for gram-positive and gram-negative bacteria and reproducibly
achieved bright fluorescent signals in these preparations. To ensure hybridization
specificity each probe was tested in the respective target strain as well as in
related microbial species together with a universal bacterial probe (EUB) and a
reverse complementary probe (NUB).

FISH based detection was achieved for the following pathogens:

Gram negative Gram positive
E. Coli S. Epidermidis
S. Maltophilia B. Subtilis
B. Cepacia

In further experiments we decided to use in situ hybridization based detection of
pathogens because we encountered the following problems with
immuncytochemistry:

production of antibodies is time-consuming

limited number of targets can be detect simultaneously using indirect IF
low commercial availability

sensitivity and specificity problems




2. Development of the Multiplex procedure

We performed mixing experiments with pre-calculated proportions of different
bacterial species. Probes for simultaneous and specific detection of bacteria
species were designed and coupled to distinct fluorochromes. The reliability of
the multiplex procedure was validated by performing object counts with the REIS
at the appropriate channel of labeling. In order to accurately count fluorescent-
labeled bacteria we established optimal imaging conditions for each objective
magnification (4x-100x) and determined the morphometric counting criteria
(threshold, area, major axis, minor axis, length, width, etc.) for each species.
Raw and corrected automated counts were closely correlated with the initial
bacteria dilutions and manual counts. To mimic the detection of “rare’ bacteria,
low bacteria of one kind was mixed into bacteria within other kinds and then
detected by counting the specific probe’s signal by the REIS.

3. Detection, enumeration and identification of microorganisms in environmental
samples and in human body fluids

After developing the multiplex procedure we focused on the evaluation of the
performance of the REIS technology on environmental water and human
peripheral blood samples. By definition rare event detection involves the analysis
of a large sample size in order to identify a single positive event. Therefore, we
introduced a membrane filtration step into the analysis process and enriched
pathogens on the surface of black polycarbonate filters from these suspensions.

To avoid immediate clogging of the narrow (0.2 _m) pore-size filters that were
required to retain all bacteria from the specimen, we first needed to work out
appropriate sample preparation conditions for human peripheral blood and
environmental water samples. The major steps of the sample preparation
involved enzymatic digestion, lyses of human cells and carefully controlled flow-
rate.

The enriched bacteria were examined by two different methods:

1. Membrane transfer technique
2. Direct epifluorescent membrane technique

The membrane transfer technique relies on the transfer of pathogens from the
surface of the membrane filters to conventional glass microscope slides and
subsequent labeling and analysis of pathogens on the slides. The advantage of
this approach is that several filters can be transferred to a single slide and thus a
new filter can be used if it is clogged. However, a major drawback is that there is
significant cell loss during the transfer process. We extensively experimented
and refined different transferring conditions but were not able to recover >75% of
the spiked bacteria from water samples.




The direct epiflurescent membrane technique does not involve any transferring
steps and the pathogens are examined directly on the surface where they are
concentrated. However, in contrast to the membrane transfer technique, the
sensitivity of the direct epifluorescent membrane method is limited to the volume
that can be filtered through the area of the membrane. To avoid the embedding
of cells in the membrane pores and thus a shifting out of the optical plane during
scanning, the direct epiflurescent membrane protocol was optimized to retain
bacteria at the membrane’s surface.

The classical direct epiflurescent membrane technique does not permit the
detection/enumberation of specific bacterial species; therefore, we had to
develop immuncytochemical and FISH protocols to specifically visualize bacterial
species on the membrane filters. After modifying our existing labeling protocols
we were able to successfully detect bacterial cells directly on the membrane
filters with both unique sequence-specific FISH probes and mono and polyclonal
antibodies. With both procedures we observed that neither the labeled objects
nor the background had a consistent brightness throughout the whole membrane
filters. The image analysis component of the REIS was updated with a dynamic
threshold determination algorithm that allowed accurate segmentation of labeled
objects irrespective of the high-noise and high-background environment of the
membrane filters.

4. Adaptation of the REIS for the detection of microorganisms

The REIS was originally developed for the detection of human cancer cells and
thus during the grant period certain technical modifications had to be made to
adopt the system to detect and enumerate microbes. The major modifications are
listed bellow: ‘

Description of Current features of the
Problems problems REIS
Digital imaging of .
bacteria staining does not aicarggmr%ff;?igﬁ {fl::t ?:e
allow image analysis m)ilcros?:o e is equipped
Fixed scanning based detection at very ith S P ¢ 9 e{p
magnification low (4x, 10x) with. Separate capture
. . parameters can be
magnifications because ianed t h
of the low signal intensity as&gneT ot‘eac
and pixel resolution magnitication.




Fixed scanning area

Border images have a
higher level of
autofluorescence and
therefore the capture
parameters are not
functioning properly on
them.

A flexible scanning area
can be defined and
saved. A positional
filtration algorithm

discards objects that lie

outside the predefined
scanning pattern.

Lack of autoexposure

The integration times
needed to be determined
manually for each
channel. A minimal
variance in the staining
intensity of the
preparations resulted in
unreliable target
identification.

An autoexposure
algorithm was developed
and implemented.
Automatically
determining the proper
integration ensures that
the maximum amount of
image information for the
processing necessary to
determine true positives
from false positives is
gathered.

Lack of autofocusing

Due to the small size of
bacteria and the high
magnification (20x-60x)
that is required to image
them out of focus images
were frequently
encountered.
Identification and
quantification of bacterial
cells based on
morphometric object
analysis strongly
depends on the
availability of high-quality
images.

A fast and reliable
autofocus module was
introduced into the REIS.
In addition, to reduce the
total scanning time a
focal plane prediction
feature was designed
and implemented.

Single channel detection

The program could
capture images of
positives in 1, 2 or 3 color
channels but were not
able to determine if a
positive is single, double
or triple labeled.

A multi-count feature was
designed and
implemented in the REIS.
The feature allows
keeping track of objects
at multiple channels and
match signals if they are
derived from the same
object.




Total cell count

The total cell counting
algorithm that was
developed to count

human cells were not

accurate to determine
bacteria numbers.

New filtering algorithms
to determine cell
boundaries and cell
group boundaries from
the images were
developed. Even on
clumpy bacteria
preparations total cell
numbers could be
counted reliably with the
new algorithm.

Fixed image thresholding

Especially on
environmental and
human blood samples we
observed a certain
inconsistency in the
overall intensity of the
images. A fixed image
threshold resulted in
loosing objects or
detecting too many false
positives.

A dynamic intensity
histogram analysis-based
thresholding method was
designed. The algorithm

reliably segmented
objects irrespective of the

background intensity.

Lack of image parameter
measurements

To be able to discover
new capture parameters
the image analysis
measurements need to
be recorded in an
organized way.

A centroid data table
displays all the image
analysis measurements
and flags at which step of
filtration the objects were
lost. This data can be
uploaded into a
PostgreSQL database
and be used for capture
parameter discovery.




5. Proof of principle: Rapid and automated detection of CMV infected leukocytes
in the peripheral blood with using the REIS approach

INTRODUCTION

To test the practicability of the REIS technology for the rapid diagnosis of
infectious disease in the clinical diagnostic setting we initiated collaboration with
a group at Yale University School of Medicine (New Haven, CT) specializing in
detecting CMV antigenemia in clinical patient samples.

CMV infection may result in significant morbidity and mortality in transplant, AIDS
and cancer patients. A manual fluorescent microscopy based antigenemia assay
has been widely used for rapid diagnosis and monitoring of CMV infection."?? In
high-risk transplant recipients early detection of low-level antigenemia has an
utmost importance.* ° Thus automated analysis of clinical specimens would be
highly desirable not just to replace the long and tedious manual slide reading but
also to improve the accuracy and reproducibility of the assay.

We hypothesized that the immunoflurescently labeled CMV-infected cell nuclei
can be automatically distinguished from non-labeled cells, non-specifically
labeled cytoplasms of eosinophils and other debris on the slides by their
morphometric characteristics. The aims of the present work were to develop an
automated approach to identify the classifiers that effectively discriminate with a
high degree of certainty true from false positive cells and to evaluate these
classifiers against manual analysis.

MATERIALS AND METHODS:

Cell preparation:

The CMV infected leukocytes were detected on cytospin preparations of
peripheral blood polymorphonuclear cells with the CMV Brite Turbo Kit. (Biotest,
USA). The kit contains a cocktail of two monoclonal mouse antibodies (C10/C11)
that targets the CMV lower matrix phosphoprotein (pp65), an early antigen in
virus replication that is abundantly present in antigen positive cells. The kit was
used as per the manufacturer instruction except that the secondary antibody of
the kit was replaced with an anti-mouse Alexa-488 conjugated antibody
(Molecular Probes, OR) and for nuclei counterstain 0.5 _g/ml DAPI was used.
The slides were mounted with the ProLong mounting Media (Molecular Probes,
OR). The brightly positive cells showed homogenous green polylobate nuclear
staining when examined under green fluorescence emission.




REIS analysis and morphologic evaluations:

The stained slides were scanned by the REIS using a 4x magnification lens
(Nikon Plan Apo, numerical aperture=0.2) and the FITC filter cube (Chroma, VT)
with a single band-pass epi illuimnation. The cytofuge concentrated the cells into
a spot on the slides that could be covered by 30 (5x6) 4x images. Digital images
were grabbed with a high-resolution CCD camera (Cooke, Sensicam) using 2.1s
integration time and the gain setting of 3. Other components of the hardware and
the scanning software have been described previously.®” The objects are
segmented from their background by a dynamic thresholding method based on
image intensity histogram analysis. Cytomorphometry measurements were
performed on the segmented objects with the Image-Pro software
(MediaCybernetics, CA), which is using 49 different measurements to
characterize the objects.

Three different methods were developed to use in conjunction with the Rare
Event Imaging System (REIS) to identify the most suitable parameters capable of
detecting CMV-infected cells.

1. The ‘Range Prediction’ method discovers morphological parameters by
statistically analyzing raw data to discover the upper and lower cutoff points of
those parameters which best separate CMV positive cells (i.e. true positives)
from non-labeled cells and debris (i.e. false positives). The Range Prediction
method is effective in creating parameter ranges (upper and lower) that are likely
to incorporate all of the true positives cells.

2. The ‘Decision Tree’ method discovers morphological parameters by analyzing
raw data using the C5.0 induction algorithm, a data mining technique developed
by Ross Quinlan and based on his C4.5 algorithm.® A decision/classification tree
uses a set of rules to predict what category a target variable falls into. The set of
rules generated by C5.0 are developed using splitting rules to recursively
partition a set of training data to the point where an accurate classification can be
made. The rules themselves consist of a decision tree model of REIS parameters
and a breakpoint measurement that determines which branch of the tree to travel
down when that parameter is above or below the given value. Each branch of a
tree ultimately culminates in a leaf node that consists of the final decision about
that case, as well as an accuracy ratio that states how often the cases in the
training set were misclassified in that node.

3. The ‘Combination’ method combines both the Range Prediction and Decision
Tree methods to isolate true positives from false positives. As a result of the
cooperative use of the two methods, the total number of items need to be
reviewed at the end of a REIS scan is filtered twice, resulting in a shorter total
scanning time.




Data collection:

The training data set was obtained by manually locating true positive cells on 10
different slides from 10 CMV-infected patients. After a positive cell was manually
found, the area of the slide where it was located was digitally photographed using
the REIS. The images were analyzed using ImagePro and the morphometric
measurement data generated from all objects were output to a table along with
the proper classification. An example of the data table is shown in Table 1.

Table 1: Morphometric data collection (actual table consists of all 49 measurements):
obj_num lomag_area lomag_aspect lomag_axis_major lomag_radius true_positive

1 16 1.046573 5.372485 3.365728 0
2 13 1.896172 5.885183 2.939244 0
3 46 1.356388 9.339807 4.943009 1
4 70 4.652574 22.26914 11.12938 0
5 168 1.343718 17.07281 8.933394 0
6 38 6.407779 19.99971 9.947926 1
7 252 2.770644 33.95271 20.48535 0
8 14 3.545789 8.020912 3.252954 1
9 20 9.475558 15.66096 7.221158 0

After all the positives were photographed on the 10 slides, the data was compiled
into one set of raw data resulting in 135 true positive cells and 3153 false positive
objects (Table 2).

Table 2: Training data set of 10 patients” samples

Slide Number Number of True Positives Number of False Positives

1 10 643
2 1 51
3 2 75
4 7 204
5 12 467
6 2 36
7 4 94
8 34 531
9 33 644
10 30 408

Total 135 31563

10



Data mining tools:
A custom-built application using the Visual Basic programming language was
developed to implement the Range Prediction, Decision Tree, and Combination

methods.

Range Prediction
There were three main components of the Range Prediction method:

1. Raw data analysis
2. Optimal parameter-combination discovery
3. Virtual testing

A screenshot of the Range Prediction application is pictured below:

w REDB  Data Analysis

1. Raw data analysis

Raw data analysis proceeded by calculating and comparing, per each parameter,
the medians, standard deviations and upper and low ranges of true and false
positives. After the analysis was done, parameters were automatically classified
as optimal or non-optimal. An optimal parameter was one that, within a
calculated range, kept every true positive yet removed false positives.
Conversely, a non-optimal parameter was one that lost any true positive. After
analyzing the raw data set, 44 of the 49 morphological measurements were
determined to be optimal parameters. Once all the parameters were classified, a
filtering algorithm iteratively applied the parameter ranges to the raw data set and
ranked the optimal parameters according to both the number of overall and
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unique false positives they removed. This information was used later in the
optimal parameter-combination discovery phase. The algorithm also produced a
best-case-scenario number that represented, given the sample set of data and a
100% true-positive retention rate, how many false positives were unable to be
removed using all 44 optimal parameters. The best-case-scenario number from
our raw data was 425, equivalent to an 86.5% reduction of all false positives. The
large reduction in the number of false positives proved our hypothesis that CMV
positive cells can in fact be distinguished from false positive objects by
cytomorphometric parameters.

2. Optimal parameter-combination discovery

While the 44 optimal parameters efficiently reduced the number of false
positives, using that many imaging parameters in the REIS was impractical for
two main reasons. First, the more parameters used to filter incoming data, the
greater the chance was that true-positives would be mistakenly classified as
negatives. Second, if a false-negative was created, an abundance of parameters
made it hard to identify, analyze, and fix the cause for the misclassification,
making it difficult to improve for future uses. Therefore, the aim of optimal
parameter-combination discovery was to create a combination of parameters that
produced a number close to the best-case-scenario number of 425 while
reducing the number of optimal parameters from 44.

The optimal parameter-combination tool could be customized in three ways:
a. Inputting the desired number of final parameters in each combination

Due to the computing power necessary to calculate all the various combinations
of parameters, the running time of the algorithm grew exponentially as the size of
the parameter combination increased. Therefore, while limiting the number of
false-positives was a goal, the length of time to discover that number was also a
factor when choosing which combinations could be analyzed. Under these
conditions, we compared the efficiency of parameter combinations that varied in
length from 1 to 7 on a Pentium 4 personal computer with 1 GB of memory.
(Table 3)

Table 3: Effect of the size of parameter combinations to remove false

positives and their total running time.
Combination Size False-Positives Remaining Total Running Time (Minutes)

1 0.00007
2 1062 0.0158
3 879 0.221
4 778 2.26
5 731 18.1
6 692 117.65
7 681 638.68
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Since the five-parameter bundle provided a balance point between a low false
positive count and a low total running time of the algorithm it was chosen to use
in further experiments.

b. Inputting the total number of combination results to return

There were multiple parameter combinations that removed the same or very
close number of false-positives. Some of these combinations were known to
carry parameters that possess a high risk of creating false-negatives. The
optimal parameter-combination tool allowed for selecting how many top
combinations of parameters the algorithm should return. The most optimal
parameter bundle could then be selected from these top hits. Using the five
parameter-bundle, the software returned the top 15 parameter combinations
along with how many false-positives were created by each one. (Table 4)

Table 4. Example of Top Parameter Combinations.

Combination 1 Parameter Name Min Max
False Remaining: 731/lomag_size_length __ [4.19069225 _ [10.94771
True Removed: 0 |lomag_perimeter2 11.0732 1304164
lomag_area box _ 10.468831175  10.945
lomag_axis_minor 3.2597597 9.20945
lomag_density_std_devi2.1782987 60.11288
Combination 2 Parameter Name Min Max
False Remaining: 732jlomag_perimeter2 11.0732 30.4164
 True Removed: 0 lomag_feret_ max  14.24693605 ~ 110.96226
»»»»»»» . lomag_area_box 10.468831175 0.945
o _____{lomag_axis_minor 3.2597597 9.20945
lomag_density std_dev 2.1782987 60.11288
Combination 3 Parameter Name Min Max
False Remaining: 736|lomag_feret_max  14.24693605 10.96226
True Removed: 0 10468831175 0945
—_|lomag_ax 3.2597597 9.20945 _
lomag_density_std_dev 2.1782987 _160.11288
lomag box x .y  |0.54285717 11.75 ‘

¢. Modifying the parameter ranges

The sample size of the training data set and the possible variance of digital
cytomorphomteric measurements allowed for the possibility that the ranges
retrieved from the raw data might not completely cover all possible values of true
positives. Thus, if ranges were to be predicted strictly based on the training data,
a large possibility existed to loose true positives on a new, independent data set.
To compensate for this, a certain percentage could be added to the top and
bottom of each optimal parameter range. This also allowed for the fact that some
optimal parameters demonstrated a very slim difference with respect to the
values of the true positive range and the false positive range. Adding a
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percentage to the parameter ranges caused these ranges to overlap, effectively
removing from the results those parameters that had a very thin separation
between true and false positives.

3. Virtual testing

Virtual testing was the capability to apply the results from the optimal parameter-
combination discovery to any set of data produced from the ImagePro image
analysis. The goal of such testing was to examine how the numbers of true and
false positives were affected by altering the ranges returned by the optimal
parameter discovery. It also allowed for testing and validating the performance of
a newly discovered parameter combination on an independent data set. Using
virtual testing we identified which parameters returned by the optimal parameter-
combination discovery method were most sensitive to change, as those
parameters were excluded from the final set because they ran a high risk of
removing true positives.

For example, one of the top parameter ranges returned by the optimal
parameter-combination algorithm included a parameter called lomag_box_x_y.
Based on the raw data, it was determined that any object that had a
lomag_box_x_y measurement not between 0.54285717 and 1.75 was to be
labeled a negative. While such a classification held true for the 135 positives in
the raw data set, based on test data analysis done using the virtual testing tool, it
was determined that this parameter was not optimal as true positives were lost
due to the narrow range of acceptance.

As a result of the optimal parameter-combination discovery and virtual testing
tools, the raw data analysis was completed with the following results. A final
parameter combination size of 5 parameters was chosen and the top 15 resulting
combinations were produced and tested using an added percentage value of 5%.
The top ranked combination resulted in a total of 731 false positives remaining
and consisted of the following parameters: lomag_size_length,
lomag_perimeter2, lomag_area_box, lomag_axis_minor and
lomag_density_std_dev. While 731 false positives represented an increase of
72% over the best-case-scenario number of 425, it still signified a 76.8%
reduction in the overall number of false positives while using 88.6% fewer
parameters.

After the final set of parameters was derived, it was tested, along with the
Decision Tree method described below, using the Rare Event Imaging System.
Decision Tree

The software created for the Decision Tree analysis encompassed the C5.0
algorithm and prepared the raw data from the Range Prediction method into the

14



format used by the algorithm. Additionally, the software served as a user
interface to run the C5.0 application. Once the algorithm analyzed the raw data a
tree-like structure, called a classifier, was created and served as a roadmap used
to predict the outcome of new cases.

Using the algorithm, a decision tree was produced which classified 135/135 true
positives, a 100% accuracy rate, and 3138/3153 false positives, a 99% accuracy
rate. An image of the analysis screen is shown below.

LR lomag toundress <=

= lomag_denziy_min <= 33
¥ lmeg denedy_meon ¢~ 381818
. & lumag density_mean > 9361818
= - lomag_faret_mean c« 7.940234
- 1 {Accuacy = 46 45%)

An example of a portion of the data tree output by C5.0 is below:

Decision tree:

lomag_area_box <= 0.4930556: 0 (989.1)
lomag_area box > 0.4930556:

:...lomag_density max <= 104: 0 (237.3)

lomag_density_max > 104:
:...lomag fractal_dim > 0: 0 (226.1)
lomag_fractal_dim <= 0:
:...lomag diameter_mean <= 4.308567: 0 (201.9)
lomag diameter mean > 4.308567:
:...lomag box_x_y <= 0.6266667: 0 (163.8/1.7)
lomag_box_x_y > 0.6266667:
:...lomag diameter min <= 2.242785: 1 (7.1/3.4)
lomag_diameter min > 2.242785:
:...lomag_area_box <= 0.5649123: 0 (139.8)
lomag_area_box > 0.5649123:
:...lomag_area_box <= 0.5719298: 1 (21.4/15.5)
lomag_area_box > 0.5719298:
t...lomag_aspect > 1.968599: 0 (68.4)
lomag_aspect <= 1.968599:
:...lomag_area box <= 0.5953947: 0 (44.2)
lomag_area_box > 0.5953947:
:...lomag_aspect > 1.9042: 1 (8.2/4.4)

| 15




SubTree

lomag_d

lomag_,

aspect <= 1.9042:

.lomag_aspect > 1.743818: 0 (66.8/0.7)
lomag aspect <= 1.743818:

[s1]

ensity min <= 80: 0 (18.6)

1omag density min > 80:
.lomag margination > 0.4966345:
..lomag_per area <= 1.98e-005: 1 (16.3/7.7)

1om

SubTree

lomag_per_area > 1.98e-005: 0 (16.3)
ag_margination <= 0.4966345:

.lomag_density min > 114: 0

(68.5/2.3)

lomag_density min <= 114: [S1]

.lomag_feret mean <= 5.294395: 0 (248.5/7.7)

lomag_feret_mean > 5.294395:

...lomag_feret_max > 10.198: 0 (25.7)

lomag_feret_max <= 10.198:
..lomag_feret_mean <= 5.319472:
lomag_feret mean > 5.319472:
.lomag_density max <= 123:
lomag density max > 123:
..lomag_density _mean <=

1 (10.6/5.5)
0 (52.9/0.7)

106.1545: 1 (7/2)

lomag_density mean > 106.1545:
.lomag_diameter max > 9.055386: 1 (16.2/6.2)
lomag_diameter_max <= 9.055386:
.lomag_feret_max > 9.217468: 0 (18.8)
lomag_feret_max <= 9.217468:
.lomag_perimeter > 25.46374: 1 (7.3/3)
lomag_perimeter <= 25.46374:

.lomag

density mean <= 175.9275:

...lomag_margination <= 0.3354912:
lomag_margination > 0.3354912:

[s2]

lomag_size length <= 6.185516: 1 (22.4/15)
lomag_size_length > 6.185516:
..lomag diameter min <= 4.351791: 0 (22.3)
lomag_diameter_min > 4.351791:
.lomag_feret_max <= 7.211099:

.lomag_density_std_dev <= 5.978093:
lomag_density std dev > 5.978093:
.lomag_roundness > 1.315424: 0
: lomag_roundness <= 1.315424:
: ...lomag_roundness <= 1.25688
lomag_roundness > 1.256882:
lomag feret max > 7.211099:
lomag_per_area <= 2.28e-005: 1 (13
lomag_per_area > 2.28e-005:
.lomag_roundness > 1.407526:
...lomag feret max <= 7.81005

lomag_feret_max > 7.810059:

lomag_roundness <= 1.407526:

..lomag_area box <= 0.6625:

lomag_area_box > 0.6625:
.lomag aspect > 1.45643

.lomag_feret_mean > 7.82226:
lomag_feret_mean <= 7.82226:

1 (4.2/2.7)
(67/0.7)

2: 0 (42.2/4)
1 (2.7/0.7)

.4/4.4)

9: 0 (12.3)
1 (9.2/2)
1 (16.7/9)

8: 0 (40.6)

lomag_aspect <= 1.456438:

.lomag_roundness >
lomag_roundness <=
.lomag_angle <=

1.367485: 0 (21.2)
1.367485:
8.749171: 0 (19.9)

lomag_angle > 8.749171:

.lomag_size

_length <= 7.071106: 0 (13.3)
lomag_size_

length > 7.071106:

density mean > 175.9275: 0 (39.3/0.7)
lomag_!

1 (44.8/30.7)

0 (25.3)
[82]

..lomag feret max <= 7.279144: 1 (5.6/2.1)
lomag_feret_max > 7.279144:
.lomag aspect > 1.416898: 1 (8.6/4.2)
lomag aspect <= 1.416898:
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:...lomag_roundness > 1.3667: 1 (2.1)
lomag_roundness <= 1.3667: [S3]

SubTree [S3]

lomag diameter min > 6.991661: 1 (9.8/5)
lomag_diameter_min <= 6.991661:
:...lomag radius_ratio > 2.421821: 1 (4.2/2.1)
lomag radius_ratio <= 2.421821:
:...lomag roundness <= 1.168165: 1 (14.6/10.1)
lomag_roundness > 1.168165: 0 (122.7/5.2)

Three properties of the C5.0 algorithm were employed to optimize the probability
of constructing classifiers that would accurately predict true positives from new
data, they were: 1. Boosting, 2. Winnowing, and 3. Cost information.

Boosting refers to the ability of C5.0 to create multiple classifiers (called a
boosting level) from one set of raw data; we used a boosting level of 10. Each
one of the 10 classifiers constructed sought to eliminate those errors made by
the previous classifier. In doing so, new errors were produced that served as the
basis for the following classifier. After the classifiers were constructed, they were
used together to predict the outcome of a new case. Specifically, each one of the
10 classifiers made a prediction on the new case along with an accuracy rate.
Using a voting methodology, a final classification on the positive type, along with
a confidence measurement, was returned.

Another process used by C5.0 to increase accuracy was that of winnowing.
Winnowing refers to the ability of C5.0 to analyze the usefulness of all 49
parameters before it developed any classifier. Those attributes deemed to be
detrimental to the final accuracy of the classifiers were unused by the algorithm.
From our data, 23 parameters were winnowed for a total of 26 useful parameters.

A final step implemented to increase the true-positive identification rate was the
concept of costs. By designating false-negatives as 5 times more costly than
false-positives, the classifiers were constructed to maximize true-positive
accuracy as opposed to overall accuracy.

RESULTS

In order to compare the Range Comparison, Decision Tree, and Combination
methods, seven additional slides each from different patient samples were
studied using the Rare Event Imaging System (REIS). The results of the
scanning methods were compared to those of manual scanning.

Using the Range Comparison method required inputting the parameter

combination chosen from the optimal parameter discovery into the REIS and
scanning a slide. During the scan, each captured image was analyzed by
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applying the range parameter combinations and counting those objects that fell
within every range. At the end of a scan, the sum of those objects counted was
referred to as the total positive count. Each positive was then reviewed manually
and those objects that were actual positives were labeled as true positives,
otherwise, the object was designated as a false positive.

In order to test the Decision Tree method, all restrictions on the parameters were |
removed and data was to be gathered from the scan without any filtering. The
data gathered was then to be analyzed afterwards using the classifier returned

by the Decision Tree method. However, upon attempting to gather data, it was
realized that without parameters to limit the amount of data recorded by the
system, it was overloaded and unable to calculate results in an efficient manner.
Therefore, the focus of our testing shifted to comparing the Range Comparison
and Combination methods.

Using the Combination method, the scans were run using the Range Comparison
method to filter all incoming data during the scan. Before the total positives were
reviewed manually, they were sent through the Decision Tree analysis. The
Decision Tree analysis classified and ranked (based on confidence) all of the
objects comprising the total positives, returning a list of all the objects along with
their classification and confidence level. Those positives classified as true
positives were then reviewed manually. The results of these experiments are
shown in Table 4.

Table 4: Comparison of Range predications and combination methods

1 13 36 11 12 66.67% 9
2 14 94 12 21 77.66% 11
3 0 13 0 69.23% 0
4 0 13 0 7 46.15% 0
5 0 49 0 7 85.71% 0
6 0 69 0 23 66.67% 0
7 0 94 0 8 91.49% 0

As seen from the table, the average overall count of positives using the Range
Parameter method alone was 52.6 positives per scan. In terms of true positives,
the Range Parameter method matched all manual counts except for slide
number one, where two were lost, and slide number two, where two were also
lost; an overall true-positive accuracy rate of 85% was obtained. After closer
inspection, it was found that all four positives lost were due to the upper range of
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one parameter, the standard deviation of the density, being set too low at
60.112878. Using virtual testing, it was discovered that this upper range could be
raised high enough to allow all four positives to pass without allowing any false
positives to be created.

While the Range Parameter method provided encouraging results, further
analyzing the data using the Decision Tree method permitted more precise
numbers. Specifically, the Combination method was able to reduce the Range
Parameter overall positive count per scan by an average of almost 72% (52.6 to
11.7), while still finding 86.9% of the true positives identified by the Range
Parameter method. The true positives lost were likely due to the relatively small
amount of data on which the decision tree classifiers were made.

The data above provides support that, between the Range Parameter method
and the Combination method, the Combination method is recommended for use
in the REIS.

CONCLUSION

In order to develop a system capable of quickly and accurately detecting CMV
positive cells, three methods were developed to use in conjunction with the Rare
Event Imaging System. Based on the resulting data, the Combination method
appears to be the most successful in terms of quickly and accurately validating
all potential positives.

Future plans for the CMV detection system will concentrate on improving the
accuracy rate of detection. This will be accomplished by compiling a larger
quantity of raw data on which to build the models. As a result of each model
being a learning algorithm, the more raw data entered into the system the more
accurate the resulting models will be. Another area of improvement will be to
more closely analyze how the Decision Tree and Range Parameter models work
cooperatively and independently of each other. Specifically, it is still of interest to
use the Decision Tree model as a stand-alone screening process, as it
theoretically offers speed and identification improvements over the Range
Parameter method. Configuring a system that allows for its independent use is a
priority for the future.
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